miR-375 regulates rat alveolar epithelial cell trans-differentiation by inhibiting Wnt/β-catenin pathway

نویسندگان

  • Yang Wang
  • Chaoqun Huang
  • Narendranath Reddy Chintagari
  • Manoj Bhaskaran
  • Tingting Weng
  • Yujie Guo
  • Xiao Xiao
  • Lin Liu
چکیده

Alveolar epithelial cell (AEC) trans-differentiation is a process where type II alveolar epithelial cells (AEC II) trans-differentiate into type I alveolar epithelial cells (AEC I) during lung recovery after various injuries, in which AEC I are damaged. This process is critical for lung tissue repair. MicroRNAs are a group of small RNAs that regulate gene expression at the post-transcriptional level. They have the potential to regulate almost every aspect of cell physiology. However, whether AEC trans-differentiation is regulated by microRNAs is completely unknown. In this study, we found that miR-375 was downregulated during AEC trans-differentiation. The overexpression of miR-375 with an adenoviral vector inhibited alveolar epithelial trans-differentiation as indicated by an increase in the AEC II marker, surfactant protein C, and decreases in the AEC I markers, T1α and advanced glycosylation end product-specific receptor. miR-375 also inhibited the Wnt/β-catenin pathway. The constitutively activation of Wnt/β-catenin signaling with a stabilized form of β-catenin blocked the miR-375 effects. Frizzled 8 was identified as a target of miR-375. In summary, our results demonstrate that miR-375 regulates AEC trans-differentiation through the Wnt/β-catenin pathway. This discovery may provide new targets for therapeutic intervention to benefit lung recovery from injuries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs

Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

Transcriptional suppression of microRNA-27a contributes to laryngeal cancer differentiation via GSK-3β-involved Wnt/β-catenin pathway

miR-27a regulates cell differentiation in a variety of diseases. However, whether and how miR-27a participates in laryngeal cancer cell differentiation remains unknown. Therefore, we explored role and molecular mechanism of miR-27a in laryngeal cancer differentiation in the study. We found that miR-27a expression was inversely correlated with laryngeal cancer differentiation degree based on the...

متن کامل

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/β-catenin signaling

MicroRNAs (miRNAs or miRs) play an important regulatory role during adipogenesis, and have been studied extensively in this regard. Specifically, the switch between the differentiation of mesenchymal stem cells (MSCs) towards adipogenic vs. osteogenic lineages is regulated by miR-204 which controls the expression of Runx2. However, the association between miR-204-5p and the Wnt/β-catenin signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013